Reject inference, augmentation, and sample selection

نویسندگان

  • John Banasik
  • Jonathan Crook
چکیده

Many researchers see the need for reject inference in credit scoring models to come from a sample selection problem whereby a missing variable results in omitted variable bias. Alternatively, practitioners often see the problem as one of missing data where the relationship in the new model is biased because the behaviour of the omitted cases differs from that of those who make up the sample for a new model. To attempt to correct for this, differential weights are applied to the new cases. The aim of this paper is to see if the use of both a Heckman style sample selection model and the use of sampling weights, together, will improve predictive performance compared with either technique used alone. This paper will use a sample of applicants in which virtually every applicant was accepted. This allows us to compare the actual performance of each model with the performance of models which are based only on accepted cases. 2006 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reject Inference and Survival Modelling

The literature suggests that the commonly used augmentation method of reject inference does little to alter the ranking performance of application scorecards, but is does improve the ability to detect an appropriate cutoff score. In this paper we examine whether the use of augmentation will improve the ranking of applicants in terms of default for various time frames, using survival analysis. T...

متن کامل

The Economic Value of Reject Inference in Credit Scoring

We use data with complete information on both rejected and accepted bank loan applicants to estimate the value of sample bias correction using Heckman’s two-stage model with partial observability. In the credit scoring domain such correction is called reject inference. We validate the model performances with and without the correction of sample bias by various measurements. Results show that it...

متن کامل

Explorer Reject inference in survival analysis by augmentation

General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edin...

متن کامل

Lean Models and Reject Inference

Credit scoring models are normally built using only applicants who have been previously accepted for credit. Such non-random sample selection may produce bias in estimated model parameters and accordingly model predictions of repayment performance may not be optimal. Previous empirical research suggests that omission of rejected applicants has a detrimental impact on model estimation and predic...

متن کامل

Credit scoring and the sample selection bias

For creating or adjusting credit scoring rules, usually only the accepted applicant’s data and default information are available. The missing information for the rejected applicants and the sorting mechanism of the preceding scoring can lead to a sample selection bias. In other words, mostly inferior classification results are achieved if these new rules are applied to the whole population of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • European Journal of Operational Research

دوره 183  شماره 

صفحات  -

تاریخ انتشار 2007